
OpenFed Documentation
Release 0.0.0

FederalLab

Sep 25, 2021

GET STARTED

1 OpenFed 1

2 Installation 5

3 Build OpenFed from source 7

4 Common 9

5 Core 13

6 Data 17

7 Federated 19

8 Functional 23

9 Optim 25

10 Tools 27

11 Topo 31

12 Utils 35

13 Api 37

14 Paillier Crypto 39

15 Simulator 47

16 v0.0.0 51

17 Frequently Asked Questions 53

18 MIT License 55

19 OpenFed Contributor License Agreement 57

20 Pull Request (PR) 59

21 common 63

22 core 65

i

23 data 67

24 federated 69

25 functional 71

26 optim 73

27 tools 75

28 topo 77

29 utils 79

30 api 81

31 How to update the documentation 83

32 Indices and tables 85

ii

CHAPTER

ONE

OPENFED

NOTE: Current version is unstable, and we will release the first stable version very soon.

1.1 Introduction

OpenFed is a foundational library for federated learning research and supports many research projects as below:

• benchmark-lightly: FederalLab’s simulation benchmark.

• openfed-cv: FederalLab’s toolkit and benchmark for computer vision in federated learning. This toolkit is based
on mmcv, and provides the federated learning for following tasks:

– MMClassification: OpenMMLab image classification toolbox and benchmark.

– MMDetection: OpenMMLab detection toolbox and benchmark.

– MMDetection3D: OpenMMLab’s next-generation platform for general 3D object detection.

– MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.

– MMAction2: OpenMMLab’s next-generation action understanding toolbox and benchmark.

– MMTracking: OpenMMLab video perception toolbox and benchmark.

– MMPose: OpenMMLab pose estimation toolbox and benchmark.

– MMEditing: OpenMMLab image and video editing toolbox.

– MMOCR: OpenMMLab text detection, recognition and understanding toolbox.

– MMGeneration: OpenMMLab image and video generative models toolbox.

• openfed-finance: FederalLab’s toolbox and benchmark for finance data analysis in federated learning.

• openfed-medical: FederalLab’s toolbox and benchmark for medical data analysis in federated learning. It is
based on MONAI.

• openfed-nlp: FederalLab’s toolbox and benchmark for natural language processing in federated learning. It is
based on transformers.

• openfed-rl: FederalLab’s toolbox and benchmark for reinforcement learning in federated learning. It is based on
stable-baselines3

In addition, we also provide a toolkit for better compatibility with following libraries, so that you can use OpenFed
with those libraries without obstacles and more easily:

• pytorch-lightning: The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not
the boilerplate.

1

https://openfed.readthedocs.io
https://pypi.org/project/OpenFed
https://pypi.org/project/OpenFed
https://github.com/FederalLab/OpenFed/actions
https://codecov.io/gh/FederalLab/OpenFed
https://github.com/FederalLab/OpenFed/blob/master/LICENSE
https://arxiv.org/abs/2109.07852
https://github.com/FederalLab/benchmark-lightly
https://github.com/FederalLab/openfed-cv
https://github.com/open-mmlab/mmcv/
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmaction2
https://github.com/open-mmlab/mmtracking
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmediting
https://github.com/open-mmlab/mmocr
https://github.com/open-mmlab/mmgeneration
https://github.com/FederalLab/openfed-finance
https://github.com/FederalLab/openfed-medical
https://github.com/Project-MONAI/MONAI
https://github.com/FederalLab/openfed-nlp
https://github.com/huggingface/transformers
https://github.com/FederalLab/openfed-rl
https://github.com/DLR-RM/stable-baselines3
https://github.com/PyTorchLightning/pytorch-lightning

OpenFed Documentation, Release 0.0.0

• mmcv: MMCV is a foundational library for computer vision research and supports many research projects.

1.2 Install

PyTorch >= 1.5.1, python>=3.6

Stable version: pip install openfed

Latest version: pip install -e git+https://github.com/FederalLab/OpenFed.git

1.3 Start Federated Learning In An Unprecedented Simple Way

import argparse
import random

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor

>>> Import OpenFed
import openfed
<<<

>>> Define arguments
parser = argparse.ArgumentParser(description='Simulator')
parser.add_argument('--props', type=str, default='/tmp/aggregator.json')
args = parser.parse_args()
<<<

>>> Load Federated Group Properties
props = openfed.federated.FederatedProperties.load(args.props)[0]
<<<

network = nn.Linear(784, 10)
loss_fn = nn.CrossEntropyLoss()

sgd = torch.optim.SGD(
network.parameters(), lr=1.0 if props.aggregator else 0.1)

>>> Convert torch optimizer to federated optimizer
fed_sgd = openfed.optim.FederatedOptimizer(sgd, props.role)
<<<

>>> Define maintainer to maintain communication among each nodes
maintainer = openfed.core.Maintainer(props, network.state_dict(keep_vars=True))
<<<

>>> Auto register the hook function to maintainer
with maintainer:

(continues on next page)

2 Chapter 1. OpenFed

https://github.com/open-mmlab/mmcv

OpenFed Documentation, Release 0.0.0

(continued from previous page)

openfed.functional.device_alignment()
if props.aggregator:

openfed.functional.count_step(props.address.world_size - 1)
<<<

total rounds to simulation
rounds = 10
if maintainer.aggregator:

>>> API Loop as aggregator
api = openfed.API(maintainer, fed_sgd, rounds,

openfed.functional.average_aggregation)
api.run()
<<<

else:
mnist = MNIST(r'/tmp/', True, ToTensor(), download=True)
>>> Convert to federated dataset
fed_mnist = openfed.data.PartitionerDataset(

mnist, total_parts=100, partitioner=openfed.data.IIDPartitioner())
<<<

dataloader = DataLoader(
fed_mnist, batch_size=10, shuffle=True, num_workers=0, drop_last=False)

for outter in range(rounds):
>>> Download latest model from aggregator
maintainer.step(upload=False)
<<<

Pick up a random federated dataset part
part_id = random.randint(0, 9)
fed_mnist.set_part_id(part_id)

network.train()
losses = []
for data in dataloader:

x, y = data
output = network(x.view(-1, 784))
loss = loss_fn(output, y)

fed_sgd.zero_grad()
loss.backward()
fed_sgd.step()
losses.append(loss.item())

loss = sum(losses) / len(losses)

>>> Finish a round
fed_sgd.round()
<<<

>>> Upload trained model and optimizer state
maintainer.update_version()
maintainer.package(fed_sgd)

(continues on next page)

1.3. Start Federated Learning In An Unprecedented Simple Way 3

OpenFed Documentation, Release 0.0.0

(continued from previous page)

maintainer.step(download=False)
<<<

Clear state dict
fed_sgd.clear_state_dict()

Now, save the piece of code as run.py, and you can use the provided script to start a simulator by:

(openfed) python -m openfed.tools.simulator --nproc 6 run.py
100%|| 10/10 [00:01<00:00, 7.21it/s]

This command will launch 6 processes (1 for aggregator, 5 for collaborators).

1.4 Citation

If you find this project useful in your research, please consider cite:

@misc{OpenFed,
Author = {Chen Dengsheng},
Title = {OpenFed: An Open-Source Security and Privacy Guaranteed Federated Learning␣
→˓Framework},
Year = {2021},
Eprint = {arXiv:2109.07852},
}

1.5 Contributing

We appreciate all contributions to improve OpenFed. Please refer to CONTRIBUTUNG.md for the contributing guide-
line.

1.6 License

OpenFed is released under the MIT License.

4 Chapter 1. OpenFed

https://github.com/FederalLab/OpenFed/raw/main/CONTRIBUTING.md

CHAPTER

TWO

INSTALLATION

pip install openfed

5

OpenFed Documentation, Release 0.0.0

6 Chapter 2. Installation

CHAPTER

THREE

BUILD OPENFED FROM SOURCE

3.1 Build on Linux or macOS

git clone https://github.com/FederalLab/OpenFed.git
cd OpenFed
pip install -e .

3.2 Build on Windows

Building OpenFed on Windows is a familiar with that on Linux.

3.3 Test

(openfed) ./pytest.sh
General test...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
collected 32 items / 11 deselected / 21 selected

tests/test_simulator.py . [4%]
tests/test_data/test_partitioner.py . [9%]
tests/test_api.py . [14%]
tests/test_build.py . [19%]
tests/test_common/test_address.py [38%]
tests/test_common/test_meta.py . [42%]
tests/test_data/test_partitioner.py ... [57%]
tests/test_topo/test_topo.py [76%]
tests/test_utils/test_table.py .. [85%]
tests/test_utils/test_utils.py ... [100%]

========== 21 passed, 11 deselected in 1.43s ===========
Federated...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1

(continues on next page)

7

OpenFed Documentation, Release 0.0.0

(continued from previous page)

rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [3] / gw1 [3] / gw2 [3]
... [100%]
================== 3 passed in 3.80s ===================
Maintainer...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [3] / gw1 [3] / gw2 [3]
... [100%]
================== 3 passed in 1.73s ===================
Simulator...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [4] / gw1 [4] / gw2 [4]
.... [100%]
================== 4 passed in 1.84s ===================
Paillier Crypt...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [2] / gw1 [2]
100%|| 2/2 [00:03<00:00, 1.87s/it]
. [100%]
================== 2 passed in 5.28s ===================
(openfed) densechen@C02DW0CQMD6R ~/code/OpenFed main ±

8 Chapter 3. Build OpenFed from source

CHAPTER

FOUR

COMMON

4.1 Meta

Meta class is a special dictionary that used to convey messages between aggregator and collaborators. It contains two
default attributions:

• mode: String in [train, others]. If mode==train, the collaborator will train the global model with personal
privacy data, and upload the trained model to aggregator. The aggregator will automatically aggregate the re-
ceived models. Otherwise, the collaborator will not update the global model. It will test the global on personal
privacy data and return the results to aggregator.

• version: Int. The version number of received global model. In federated learning, we need to use this version
tag to control the update behavior of aggregator. Sometimes, the aggregator receives the invalid version of model,
which may be out of date. When this case occurs, aggregator will apply some tragedies to deal with it.

Meta class can used as a standard dictionary:

>>> import openfed
>>> meta = openfed.Meta()
>>> meta
<OpenFed> Meta
+-------+---------+
| mode | version |
+-------+---------+
| train | -1 |
+-------+---------+

>>> meta['timestamp'] = openfed.utils.time_string()
>>> meta
<OpenFed> Meta
+-------+---------+---------------------+
| mode | version | timestamp |
+-------+---------+---------------------+
| train | -1 | 2021-09-21 09:50:41 |
+-------+---------+---------------------+

Meta class can also be used as a class to access his attributions:

>>> import openfed
>>> meta = openfed.Meta()
>>> meta
<OpenFed> Meta

(continues on next page)

9

OpenFed Documentation, Release 0.0.0

(continued from previous page)

+-------+---------+
| mode | version |
+-------+---------+
| train | -1 |
+-------+---------+

>>> meta.timestamp = openfed.utils.time_string()
>>> meta
<OpenFed> Meta
+-------+---------+---------------------+
| mode | version | timestamp |
+-------+---------+---------------------+
| train | -1 | 2021-09-21 09:52:47 |
+-------+---------+---------------------+

4.2 Address

Address class stores all the arguments needed to build a process group. It will automatically check the arguments you
passed in. There are two kinds of address:

• tcp_address: TCP address will keep the communication via a tcp address.

• file_address: File address will keep the communication via a shared file.

We also provide an empty_address, which contains nothing information, to play as a placeholder.

Define a tcp address:

>>> import openfed
>>> tcp_address = openfed.Address('gloo', 'tcp://localhost:1994')
>>> tcp_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

Load the default_tcp_address:

>>> import openfed
>>> openfed.default_tcp_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

Define a file address:

10 Chapter 4. Common

OpenFed Documentation, Release 0.0.0

>>> import openfed
>>> file_address = openfed.Address('gloo', 'file:///tmp/openfed.sharedfile')
>>> file_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

Load the default_file_address:

>>> import openfed
>>> openfed.default_file_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

Load the empty_address:

>>> import openfed
>>> openfed.empty_address
<OpenFed> Address
+---------+-------------+------------+------+
| backend | init_method | world_size | rank |
+---------+-------------+------------+------+
| null | null | 2 | -1 |
+---------+-------------+------------+------+

You can refer to the API documentation for more details about each arguments.

4.2. Address 11

OpenFed Documentation, Release 0.0.0

12 Chapter 4. Common

CHAPTER

FIVE

CORE

5.1 Maintainer

:class:Maintainer bridges the connection between upper(federated algorithms) and lower(communication and topol-
ogy) layers. It has the following properties:

• pipe: The currently target to communicate with. A maintainer will manage several pipes in the same time, and
pipe will indicate what is the current target.

• pipes: A list of pipes to communicate with.

• current_step: It is used to indicate which step is running on.

• fed_props: Actually, a maintainer is corresponding to a specified federated group. We record the related fed-
erated group properties in this attributions.

You can use :class:Maintainer to conduct a flexible communication with other nodes more easily than :class:Pipe.

5.2 Examples

Aggregator:

build a topology first
import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, aggregator)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build network
(continues on next page)

13

OpenFed Documentation, Release 0.0.0

(continued from previous page)

import torch.nn as nn
network = nn.Linear(10, 1)

build maintainer
from openfed.core import Maintainer
maintainer = Maintainer(federated_group_prop,

network.state_dict(keep_vars=True))

with maintainer:
openfed.functional.device_alignment()
openfed.functional.count_step(2)

maintainer.step()

Collaborator alpha:

build a topology first
import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, alpha)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build network
import torch.nn as nn
network = nn.Linear(10, 1)

build maintainer
from openfed.core import Maintainer
maintainer = Maintainer(federated_group_prop,

network.state_dict(keep_vars=True))

with maintainer:
openfed.functional.device_alignment()

maintainer.step(upload=False)
maintainer.package()
maintainer.step(download=False)

Collaborator beta:

14 Chapter 5. Core

OpenFed Documentation, Release 0.0.0

build a topology first
import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, beta)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build network
import torch.nn as nn
network = nn.Linear(10, 1)

build maintainer
from openfed.core import Maintainer
maintainer = Maintainer(federated_group_prop,

network.state_dict(keep_vars=True))

with maintainer:
openfed.functional.device_alignment()

maintainer.step(upload=False)
maintainer.package()
maintainer.step(download=False)

5.2. Examples 15

OpenFed Documentation, Release 0.0.0

16 Chapter 5. Core

CHAPTER

SIX

DATA

6.1 FederatedDataset

In order to load the simulated federated data in a uniform way, we provide :class:FederatedDataset. Compared with
:class:Dataset, it has two extra attributes:

• part_id: Part id to load.

• total_parts: The total number of parts.

6.2 PartitionerDataset

:class:PartitionerDataset will divide a custom dataset according to the partitioner you selected. It is the most
convenient method to generate a simulated federated dataset for testing.

For example, we can use the following piece of code to generate the Federated-MNIST:

>>> from openfed.data import IIDPartitioner, PartitionerDataset
>>> from torchvision.datasets import MNIST
>>> from torchvision.transforms import ToTensor
>>> dataset = PartitionerDataset(

MNIST(r'/tmp/', True, ToTensor(), download=True), total_parts=10,␣
→˓partitioner=IIDPartitioner())
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/MNIST/
→˓raw/train-images-idx3-ubyte.gz
9913344it [00:19, 502512.54it/s]
Extracting /tmp/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to /tmp/MNIST/
→˓raw/train-labels-idx1-ubyte.gz
29696it [00:00, 853940.49it/s]
Extracting /tmp/MNIST/raw/train-labels-idx1-ubyte.gz to /tmp/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to /tmp/MNIST/raw/
→˓t10k-images-idx3-ubyte.gz
1649664it [00:04, 406894.94it/s]
Extracting /tmp/MNIST/raw/t10k-images-idx3-ubyte.gz to /tmp/MNIST/raw

(continues on next page)

17

OpenFed Documentation, Release 0.0.0

(continued from previous page)

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/MNIST/raw/
→˓t10k-labels-idx1-ubyte.gz
5120it [00:00, 14221746.01it/s]
Extracting /tmp/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/MNIST/raw

Processing...
/Users/densechen/miniconda3/envs/openfed/lib/python3.7/site-packages/torchvision/
→˓datasets/mnist.py:502: UserWarning: The given NumPy array is not writeable, and␣
→˓PyTorch does not support non-writeable tensors. This means you can write to the␣
→˓underlying (supposedly non-writeable) NumPy array using the tensor. You may want to␣
→˓copy the array to protect its data or make it writeable before converting it to a␣
→˓tensor. This type of warning will be suppressed for the rest of this program.␣
→˓(Triggered internally at /Users/distiller/project/conda/conda-bld/pytorch_
→˓1616554799287/work/torch/csrc/utils/tensor_numpy.cpp:143.)
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

Done!
>>> from openfed.data.utils import samples_distribution
>>> samples_distribution(dataset, True)
+-------+---------+---------+------+
| Parts | Samples | Mean | Var |
+-------+---------+---------+------+
| 10 | 59960 | 5996.00 | 0.00 |
+-------+---------+---------+------+
[5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996]

6.3 Partitioner

:class:Partitioner can generate a non-iid distribution datasets easily. We provide three different ways, i.e.,
PowerLawPartitioner, DirichletPartitioner, IIDPartitioner.

18 Chapter 6. Data

CHAPTER

SEVEN

FEDERATED

7.1 Pipe

:class:Pipe maintains the communication operation between two nodes, including tensor data and info message. It
uses a store to transfer info message and process group with gloo or mpi to transfer tensor data.

7.2 DistributedProperties

:class:DistributedProperties contains all distributed attributions of torch.distributed.distributed_c10d.
Usually, you can use it with context environment.

with dist_props:
...

7.3 FederatedProperties

:class:FederatedProperties contains all federated attributions, such as address, role and nick name. It is usually
generated via :func:openfed.topo.analysis.

7.4 Examples

Here, we try to communicate some information among aggregator, collaborator_alpha and
collaborator_beta. You need to open three independent terminals to run the following three scripts.

Aggregator:

build a topology first
import time

transfer data
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
(continues on next page)

19

OpenFed Documentation, Release 0.0.0

(continued from previous page)

alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, aggregator)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

assert len(pipes) == 2
alpha_pipe, beta_pipe = pipes

transfer message
alpha_pipe.direct_set('message_0', 'hello world from aggregator to alpha')
beta_pipe.direct_set('message_0', 'hello world from aggregator to beta')

print(alpha_pipe.direct_get('message_1'))
print(beta_pipe.direct_get('message_1'))

data = torch.tensor(-1)
with alpha_pipe.dist_props:

time.sleep(0.5)
send data to alpha
alpha_pipe.upload(data)

time.sleep(0.5)
download data from alpha
assert alpha_pipe.download() == 1

with beta_pipe.dist_props:
time.sleep(0.5)
send data to beta
beta_pipe.upload(data)

time.sleep(0.5)
download data from beta
assert beta_pipe.download() == 2

time.sleep(1)

Collaborator alpha:

build a topology first
import time

(continues on next page)

20 Chapter 7. Federated

OpenFed Documentation, Release 0.0.0

(continued from previous page)

transfer tensor
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, alpha)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

alpha_pipe = pipes[0]

transfer message
print(alpha_pipe.direct_get('message_0'))

alpha_pipe.direct_set('message_1', 'hello world from alpha to aggregator')

data = torch.tensor(1)
with alpha_pipe.dist_props:

download data from aggregator
assert alpha_pipe.download() == -1

upload data to aggregator
alpha_pipe.upload(data)

time.sleep(1)

Collaborator beta:

build a topology first
import time

transfer data
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
(continues on next page)

7.4. Examples 21

OpenFed Documentation, Release 0.0.0

(continued from previous page)

alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, beta)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

beta_pipe = pipes[0]

transfer message
print(beta_pipe.direct_get('message_0'))

beta_pipe.direct_set('message_1', 'hello world from beta to aggregator')

data = torch.tensor(2)
with beta_pipe.dist_props:

download data from aggregator
assert beta_pipe.download() == -1

upload data to aggregator
beta_pipe.upload(data)

time.sleep(1)

The output of aggregator:

(openfed) python aggregator.py
hello world from alpha to aggregator
hello world from beta to aggregator

The output of collaborator alpha:

(openfed) python collaborator_alpha.py
hello world from aggregator to alpha

The output of collaborator beta:

(openfed) python collaborator_beta.py
hello world from aggregator to beta

22 Chapter 7. Federated

CHAPTER

EIGHT

FUNCTIONAL

There are three mainly kinds of hooks, i.e., package hook, unpackage hook and step hook. All these hooks can be
automatically register to a maintainer in with maintainer context. There is a nice value to control the order of the
hooks to apply. A lower nice value means a higher priority.

8.1 Step

Step hook is mainly used for control aggregator operations. You can define a step hook and register it to a maintainer
via :func:register_step_hook.

8.2 Package and Unpackage

Package and Unpackage hooks usually pair up with each other. This hook is used for pack data before up-
load and unpack data after download. You can define a package hook and register it to a maintainer via
:func:register_package_hook. You can also define a unpackage hook and register it to a maintainer via
:func:register_unpackage_hook.

23

OpenFed Documentation, Release 0.0.0

24 Chapter 8. Functional

CHAPTER

NINE

OPTIM

9.1 FederatedOptimizer

:class:FederatedOptimizerwrapper an :class:torch.optim.Optimizer, and provide some necessary functions for
federated learning. The simplest way to generate an federated optimizer is to use this wrapper like:

sgd = optim.SGD(...)
For aggregator
fed_sgd = FederatedOptimizer(sgd, role=openfed.aggregator)
For collaborator
fed_sgd = FederatedOptimizer(sgd, role=openfed.collaborator)

FederatedOptimizer usually has different behaviors when it plays different roles. It has two special functions, namely
:func:acg_step and :func:round.

• acg_step: If you want to calculate some statistic metric of dataset with the downloaded model, you can imple-
ment here. This function will be called before the training phase.

• round: If you need to calculate some statistic metric of dataset with the trained model, you can implement here.
This function will be called after the training phase.

25

OpenFed Documentation, Release 0.0.0

26 Chapter 9. Optim

CHAPTER

TEN

TOOLS

10.1 TopoBuilder

TopoBuilder provides a common line for you to build a massive topology graph more easily. Then you can save it to
disk and load it in your code.

The following example shows how to build a hierarchical topology graph:

(openfed) python -m openfed.tools.topo_builder
A script to build topology.
<OpenFed>: add_node
Nick Name
red
Does this node requires address? (Y/n)
n
<OpenFed> Node
nick name: red
<OpenFed> Address
+---------+-------------+------------+------+
| backend | init_method | world_size | rank |
+---------+-------------+------------+------+
| null | null | 2 | -1 |
+---------+-------------+------------+------+

<OpenFed>: add_node
Nick Name
green
Does this node requires address? (Y/n)
n
<OpenFed> Node
nick name: green
<OpenFed> Address
+---------+-------------+------------+------+
| backend | init_method | world_size | rank |
+---------+-------------+------------+------+
| null | null | 2 | -1 |
+---------+-------------+------------+------+

<OpenFed>: add_node
(continues on next page)

27

OpenFed Documentation, Release 0.0.0

(continued from previous page)

Nick Name
purple
Does this node requires address? (Y/n)
n
<OpenFed> Node
nick name: purple
<OpenFed> Address
+---------+-------------+------------+------+
| backend | init_method | world_size | rank |
+---------+-------------+------------+------+
| null | null | 2 | -1 |
+---------+-------------+------------+------+

<OpenFed>: add_node
Nick Name
blue
Does this node requires address? (Y/n)
y
Backend (gloo, mpi, nccl)
gloo
Init method i.e., tcp://localhost:1994, file:///tmp/openfed.sharedfile)
tcp://localhost:1994
<OpenFed> Node
nick name: blue
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://lo...ost:1994 | 2 | -1 |
+---------+---------------------+------------+------+

<OpenFed>: add_node
Nick Name
yellow
Does this node requires address? (Y/n)
y
Backend (gloo, mpi, nccl)
mpi
Init method i.e., tcp://localhost:1994, file:///tmp/openfed.sharedfile)
file://tmp/openfed.sharedfile
<OpenFed> Node
nick name: yellow
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| mpi | file://t...aredfile | 2 | -1 |
+---------+---------------------+------------+------+

(continues on next page)

28 Chapter 10. Tools

OpenFed Documentation, Release 0.0.0

(continued from previous page)

<OpenFed>: build_edge
Start node nick name
red
End node nick name
blue
<OpenFed> Edge
|red -> blue.

<OpenFed>: build_edge
Start node nick name
green
End node nick name
blue
<OpenFed> Edge
|green -> blue.

<OpenFed>: build_edge
Start node nick name
blue
End node nick name
yellow
<OpenFed> Edge
|blue -> yellow.

<OpenFed>: build_edge
Start node nick name
purple
End node nick name
yellow
<OpenFed> Edge
|purple -> yellow.

<OpenFed>: save
Filename:
topology
+--------+-----+-------+--------+------+--------+
| CO\AG | red | green | purple | blue | yellow |
+--------+-----+-------+--------+------+--------+
red	.	.	.	^	.
green	.	.	.	^	.
purple	^
blue	^
yellow
+--------+-----+-------+--------+------+--------+
<OpenFed>: analysis
Folder to save the analysis result:
props
Processing red
[{'role': 'openfed_collaborator', 'nick_name': 'red', 'address': {'backend': 'gloo',
→˓'init_method': 'tcp://localhost:1994', 'world_size': 3, 'rank': 2}}]
Processing green
[{'role': 'openfed_collaborator', 'nick_name': 'green', 'address': {'backend': 'gloo',
→˓'init_method': 'tcp://localhost:1994', 'world_size': 3, 'rank': 1}}] (continues on next page)

10.1. TopoBuilder 29

OpenFed Documentation, Release 0.0.0

(continued from previous page)

Processing purple
[{'role': 'openfed_collaborator', 'nick_name': 'purple', 'address': {'backend': 'mpi',
→˓'init_method': 'file://tmp/openfed.sharedfile', 'world_size': 3, 'rank': 2}}]
Processing blue
[{'role': 'openfed_aggregator', 'nick_name': 'blue', 'address': {'backend': 'gloo',
→˓'init_method': 'tcp://localhost:1994', 'world_size': 3, 'rank': 0}}, {'role': 'openfed_
→˓collaborator', 'nick_name': 'blue', 'address': {'backend': 'mpi', 'init_method':
→˓'file://tmp/openfed.sharedfile', 'world_size': 3, 'rank': 1}}]
Processing yellow
[{'role': 'openfed_aggregator', 'nick_name': 'yellow', 'address': {'backend': 'mpi',
→˓'init_method': 'file://tmp/openfed.sharedfile', 'world_size': 3, 'rank': 0}}]
<OpenFed>: exit

10.2 Simulator

Simulator, which is similar with torch.distributed.launch, is a module that spawns up multiple federated
training processes on each of the training nodes. It will build a centralized topology automatically. It is very useful
while simulating massive nodes to do the federated learning experience.

Write a piece of code, named run.py:

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--props')

args = parser.parse_args()

print(args.props)

Usage:

(openfed) python -m openfed.tools.simulator --nproc 10 run.py
/tmp/aggregator.json
/tmp/collaborator-1.json
/tmp/collaborator-2.json
/tmp/collaborator-3.json
/tmp/collaborator-4.json
/tmp/collaborator-5.json
/tmp/collaborator-6.json
/tmp/collaborator-7.json
/tmp/collaborator-8.json
/tmp/collaborator-9.json

30 Chapter 10. Tools

CHAPTER

ELEVEN

TOPO

11.1 Node

Each device is regarded as a Nodewith nick_name and address. The nick name is the identification for each node and
needs to be unique. Any nodes could connect to others via the address. Only when two nodes have the same address
and nick name, we will regard them as the some one.

For example, we can define two nodes:

>>> import openfed
>>> alpha = openfed.topo.Node('alpha node', openfed.default_tcp_address)
>>> beta = openfed.topo.Node('beta node', openfed.default_file_address)
>>> alpha
<OpenFed> Node
nick name: alpha node
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

>>> beta
<OpenFed> Node
nick name: beta node
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

31

OpenFed Documentation, Release 0.0.0

11.2 Edge

The relation between two nodes is determined via Edge. An Edge with two attributions:

• start: The start node, namely the collaborator nodes.

• end: The end node, namely the aggregator nodes.

If you want to build a connection between alpha(collaborator) and beta(aggregator), you may need a piece of code like:

>>> edge = openfed.topo.Edge(alpha, beta)
>>> edge
<OpenFed> Edge
|alpha node -> beta node.

In OpenFed, all the connection relationship should be represented as a Topology.

11.3 Topology

In OpenFed, we use Topology to manage massive nodes and edges. Here, we try to build a very simple centralized
topology between three nodes, alpha(aggregator), beta(collaborator), gamma(collaborator).

>>> import openfed
>>> # define node
>>> alpha = openfed.topo.Node('alpha node', openfed.default_tcp_address)
>>> # the address of collaborator can be ignored.
>>> beta = openfed.topo.Node('beta node', openfed.empty_address)
>>> gamma = openfed.topo.Node('gamma node', openfed.empty_address)
>>> # define an empty topology
>>> topology = openfed.topo.Topology()
>>> # add nodes to topology
>>> topology.add_node(alpha)
>>> topology.add_node(beta)
>>> topology.add_node(gamma)
>>> # add edge
>>> topology.add_edge(beta, alpha)
>>> topology.add_edge(gamma, alpha)
>>> topology
+------------+------------+-----------+------------+
| CO\AG | alpha node | beta node | gamma node |
+------------+------------+-----------+------------+
| alpha node | . | . | . |
| beta node | ^ | . | . |
| gamma node | ^ | . | . |
+------------+------------+-----------+------------+

32 Chapter 11. Topo

OpenFed Documentation, Release 0.0.0

11.4 FederatedGroup

We will analysis Topology and build a FederatedGroup for each node. Whatever the topology is, we will divide
it into many federated groups. In each group, the node can only be a aggregator or a collaborator. In different
groups, the node can play different roles.

Federated groups of alpha node:

>>> federated_groups = openfed.topo.analysis(topology, alpha)
>>> federated_groups
[<OpenFed> FederatedProperties
+--------------------+------------+
| role | nick_name |
+--------------------+------------+
| openfed_aggregator | alpha node |
+--------------------+------------+
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 0 |
+---------+---------------------+------------+------+

]

Federated groups of beta node:

>>> federated_groups = openfed.topo.analysis(topology, beta)
>>> federated_groups
[<OpenFed> FederatedProperties
+----------------------+-----------+
| role | nick_name |
+----------------------+-----------+
| openfed_collaborator | beta node |
+----------------------+-----------+
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 1 |
+---------+---------------------+------------+------+

]

Federated groups of gamma node:

>>> federated_groups = openfed.topo.analysis(topology, gamma)
>>> federated_groups
[<OpenFed> FederatedProperties
+----------------------+------------+
| role | nick_name |
+----------------------+------------+
| openfed_collaborator | gamma node |
+----------------------+------------+

(continues on next page)

11.4. FederatedGroup 33

OpenFed Documentation, Release 0.0.0

(continued from previous page)

<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 2 |
+---------+---------------------+------------+------+

]

You can refer to openfed.tools.topo_builder for more details about how to build a complex topology.

34 Chapter 11. Topo

CHAPTER

TWELVE

UTILS

This component provides some useful functions, such as seed_everything, time_string.

12.1 Format output as table

Sometimes, we can receive a better visualization via show some data in a table.

You can do this with :func:tablist:

>>> from openfed.utils import tablist
>>> head = ['a', 'b', 'c', 'd', 'e', 'f']
>>> data = [1, 2, 3, 4, 5, 6]
>>> print(tablist(head, data, 3))
+---+---+---+
| a | b | c |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
+---+---+---+
| d | e | f |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
>>> print(tablist(head, data, force_in_one_row=True))
+---+---+---+---+---+---+
| a | b | c | d | e | f |
+---+---+---+---+---+---+
| 1 | 2 | 3 | 4 | 5 | 6 |
+---+---+---+---+---+---+
>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> print(tablist(head, data, force_in_one_row=True))
+---+---+---+----+----+----+
| a | b | c | d | e | f |
+---+---+---+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 |
| 7 | 8 | 9 | 10 | 11 | 12 |
+---+---+---+----+----+----+

35

OpenFed Documentation, Release 0.0.0

36 Chapter 12. Utils

CHAPTER

THIRTEEN

API

:class:API provides a simple wrapper of aggregator logistic. After define an :class:API, you can use it in the backend:

api.start()
api.join()

or run it on the main process:

api.run()

When it runs on backend, you have to acquire the :attr:openfed.federated.openfed_lock before start your main
process distributed training. The :attr:openfed.federated.openfed_lock will lock the data-transfer operation at
openfed, but has no influence on message-transfer. Since openfed share the same module with torch to build commu-
nication between two process, we have to use this lock to control the data transfer operation.

37

OpenFed Documentation, Release 0.0.0

38 Chapter 13. Api

CHAPTER

FOURTEEN

PAILLIER CRYPTO

This script shows a simple demostration about Paillier Crypto algorithm on federated MNIST dataset.

14.1 Public and Private Key

import os
import torch

from openfed.functional import key_gen

if not os.path.isfile('/tmp/public.key') or not os.path.isfile('/tmp/private.key'):
public_key, private_key = key_gen()
public_key.save('/tmp/public.key')
private_key.save('/tmp/private.key')
print("Generate new public and private key.")

else:
print("Found public and private key under '/tmp'")

Found public and private key under '/tmp'

14.2 Network and Loss

import torch.nn as nn

def build_network():
network = nn.Linear(784, 10)
loss_fn = nn.CrossEntropyLoss()
return network, loss_fn

39

OpenFed Documentation, Release 0.0.0

14.3 Optimizer

from openfed.federated import is_aggregator, is_collaborator
from openfed.optim import FederatedOptimizer
import torch.optim as optim

def build_optimizer(network, role):
sgd = optim.SGD(network.parameters(), lr=1.0 if is_aggregator(role) else 0.1)
fed_sgd = FederatedOptimizer(sgd, role=role)
return fed_sgd

14.4 Topology

import openfed
import openfed.topo as topo

def build_topology():
aggregator_node = topo.Node('aggregator', address=openfed.default_tcp_address)
collaborator_node = topo.Node('collaborator', address=openfed.empty_address)

topology = topo.Topology()
topology.add_edge(collaborator_node, aggregator_node)

return topology

14.5 Federated Group Properties

def build_props(topology, role):
fed_props = topo.analysis(topology, 'aggregator' if is_aggregator(role) else

→˓'collaborator')
assert len(fed_props) == 1
fed_prop = fed_props[0]

return fed_prop

14.6 Maintainer

from openfed.core import Maintainer

def build_maintainer(fed_prop, state_dict, role, part_per_round):
maintainer = Maintainer(fed_prop, state_dict)

with maintainer:
openfed.functional.device_alignment()
if is_aggregator(role):

(continues on next page)

40 Chapter 14. Paillier Crypto

OpenFed Documentation, Release 0.0.0

(continued from previous page)

openfed.functional.count_step(part_per_round)
else:

public_key = openfed.functional.PublicKey.load('/tmp/public.key')
openfed.functional.paillier_package(public_key)

return maintainer

14.7 Dataset

from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
from openfed.data import IIDPartitioner, PartitionerDataset

def build_dataset():
Dataset
mnist = MNIST(r'/tmp/', True, ToTensor(), download=True)
fed_mnist = PartitionerDataset(mnist, total_parts=10, partitioner=IIDPartitioner())

Dataloader
dataloader = DataLoader(fed_mnist, batch_size=10, shuffle=True, num_workers=0, drop_

→˓last=False)

return dataloader

14.8 API

def build_API(maintainer, fed_sgd, rounds):
private_key = openfed.functional.PrivateKey.load('/tmp/private.key')
api = openfed.API(maintainer,

fed_sgd,
rounds,
agg_func=openfed.functional.paillier_aggregation,
agg_func_kwargs=dict(private_key=private_key),
)

return api

14.9 Step

import random
import time

def step(mt, dataloader, network, loss_fn, fed_optim, rounds, part_per_round):
version = 0
outter_losses = []
for outter in range(rounds):

(continues on next page)

14.7. Dataset 41

OpenFed Documentation, Release 0.0.0

(continued from previous page)

outter_loss = []
for inner in range(part_per_round):

mt.update_version(version)
mt.step(upload=False)

part_id = random.randint(0, 9)
dataloader.dataset.set_part_id(part_id)

network.train()
losses = []
tic = time.time()
for data in dataloader:

x, y = data
output = network(x.view(-1, 784))
loss = loss_fn(output, y)

fed_optim.zero_grad()
loss.backward()
fed_optim.step()
losses.append(loss.item())

toc = time.time()
loss = sum(losses) / len(losses)
outter_loss.append(loss)
duration = toc - tic

fed_optim.round()

mt.update_version(version + 1)
mt.package(fed_optim)
mt.step(download=False)
fed_optim.clear_state_dict()

version += 1
outter_losses.append(sum(outter_loss) / len(outter_loss))

torch.save(outter_losses, '/tmp/outter_losses')

14.10 Main Function

def main_function(role, rounds, part_per_round):
Network
network, loss_fn = build_network()

if is_aggregator(role):
print(network)
print(loss_fn)

Optimizer
fed_sgd = build_optimizer(network, role)

if is_aggregator(role):
print(fed_sgd)

(continues on next page)

42 Chapter 14. Paillier Crypto

OpenFed Documentation, Release 0.0.0

(continued from previous page)

Topology
topology = build_topology()

if is_aggregator(role):
print(topology)

Federated Group Properties
fed_prop = build_props(topology, role)

print(fed_prop)

Maintainer
maintainer = build_maintainer(fed_prop, network.state_dict(keep_vars=True), role,␣

→˓part_per_round)

if is_aggregator(role):
api = build_API(maintainer, fed_sgd, rounds)
api.start()

else:
dataloader = build_dataset()
step(maintainer, dataloader, network, loss_fn, fed_sgd, rounds, part_per_round)

14.11 Enable colorize output

from openfed.utils.utils import FMT

FMT.color = True

14.12 Run

from multiprocessing import Process
import openfed
rounds = 3
part_per_round = 5

aggregator_pc = Process(target=main_function, args=(openfed.federated.aggregator, rounds,
→˓ part_per_round))
collaborator = Process(target=main_function, args=(openfed.federated.collaborator,␣
→˓rounds, part_per_round))

aggregator_pc.start()
collaborator.start()

aggregator_pc.join()
collaborator.join()

14.11. Enable colorize output 43

OpenFed Documentation, Release 0.0.0

Linear(in_features=784, out_features=10, bias=True)
CrossEntropyLoss()
[0;34m<OpenFed>[0m [0;35mFederatedProperties[0m
+----------------------+--------------+
| role | nick_name |
+----------------------+--------------+
| openfed_collaborator | collaborator |
+----------------------+--------------+
[0;34m<OpenFed>[0m [0;35mAddress[0m
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://lo...ost:1994 | 2 | 1 |
+---------+---------------------+------------+------+

[0;34m<OpenFed>[0m [0;35mFederatedOptimizer[0m
SGD (
Parameter Group 0

dampening: 0
lr: 1.0
momentum: 0
nesterov: False
weight_decay: 0

)

+--------------+--------------+------------+
| CO\AG | collaborator | aggregator |
+--------------+--------------+------------+
| collaborator | . | ^ |
| aggregator | . | . |
+--------------+--------------+------------+
[0;34m<OpenFed>[0m [0;35mFederatedProperties[0m
+--------------------+------------+
| role | nick_name |
+--------------------+------------+
| openfed_aggregator | aggregator |
+--------------------+------------+
[0;34m<OpenFed>[0m [0;35mAddress[0m
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://lo...ost:1994 | 2 | 0 |
+---------+---------------------+------------+------+

100%|| 3/3 [00:12<00:00, 4.10s/it]

44 Chapter 14. Paillier Crypto

OpenFed Documentation, Release 0.0.0

14.13 Result

%matplotlib inline

import matplotlib.pyplot as plt

outter_losses = torch.load('/tmp/outter_losses')

plt.figure()
plt.plot(outter_losses)
plt.title('Round-Loss')
plt.xlabel('Round')
plt.ylabel('Loss')
plt.show()

14.13. Result 45

OpenFed Documentation, Release 0.0.0

46 Chapter 14. Paillier Crypto

CHAPTER

FIFTEEN

SIMULATOR

This script provides a most simplest way to do federated learning with simultor.

15.1 Script

import argparse
import random
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor

import openfed
from openfed.data import IIDPartitioner, PartitionerDataset

parser = argparse.ArgumentParser(description='Simulator')
parser.add_argument('--props', type=str, default='/tmp/aggregator.json')
args = parser.parse_args()

props = openfed.federated.FederatedProperties.load(args.props)
assert len(props) == 1
props = props[0]

network = nn.Linear(784, 10)
loss_fn = nn.CrossEntropyLoss()

sgd = torch.optim.SGD(
network.parameters(), lr=1.0 if props.aggregator else 0.1)

fed_sgd = openfed.optim.FederatedOptimizer(sgd, props.role)

maintainer = openfed.core.Maintainer(props, network.state_dict(keep_vars=True))

with maintainer:
openfed.functional.device_alignment()
if props.aggregator:

openfed.functional.count_step(props.address.world_size - 1)

rounds = 10
(continues on next page)

47

OpenFed Documentation, Release 0.0.0

(continued from previous page)

if maintainer.aggregator:
api = openfed.API(maintainer, fed_sgd, rounds,

openfed.functional.average_aggregation)
api.run()

else:
mnist = MNIST(r'/tmp/', True, ToTensor(), download=True)
fed_mnist = PartitionerDataset(

mnist, total_parts=100, partitioner=IIDPartitioner())

dataloader = DataLoader(
fed_mnist, batch_size=10, shuffle=True, num_workers=0, drop_last=False)

version = 0
for outter in range(rounds):

maintainer.update_version(version)
maintainer.step(upload=False)

part_id = random.randint(0, 9)
fed_mnist.set_part_id(part_id)

network.train()
losses = []
for data in dataloader:

x, y = data
output = network(x.view(-1, 784))
loss = loss_fn(output, y)

fed_sgd.zero_grad()
loss.backward()
fed_sgd.step()
losses.append(loss.item())

loss = sum(losses) / len(losses)

fed_sgd.round()

maintainer.update_version(version + 1)
maintainer.package(fed_sgd)
maintainer.step(download=False)
fed_sgd.clear_state_dict()
version += 1

Copy and save these piece of code as examples/run.py.

48 Chapter 15. Simulator

OpenFed Documentation, Release 0.0.0

15.2 Run

Launch 6 process (1 for aggregator, 5 for collaborator) to do simulation.
!python -m openfed.tools.simulator --nproc 6 run.py

[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address.␣
→˓Using the loopback address as fallback. Manually set the network interface to bind to␣
→˓with GLOO_SOCKET_IFNAME. (function operator())
100%|| 10/10 [00:01<00:00, 5.90it/s]

15.2. Run 49

OpenFed Documentation, Release 0.0.0

50 Chapter 15. Simulator

CHAPTER

SIXTEEN

V0.0.0

In order to flexibly support more federated algorithms and projects, like scaffold, mmcv, the directory of openfed
might be refactored.

v0.0.0’s directory was organized as follows.

openfed
__init__.py
api.py
common

__init__.py
address.py
meta.py

core
__init__.py
const.py
functional.py
maintainer.py

data
__init__.py
datasets.py
partitioner.py
utils.py

federated
__init__.py
const.py
exceptions.py
functional.py
pipe.py
props.py

functional
__init__.py
agg.py
const.py
hooks.py
paillier.py
reduce.py
step.py

optim
__init__.py
elastic.py
fed_optim.py

(continues on next page)

51

OpenFed Documentation, Release 0.0.0

(continued from previous page)

prox.py
scaffold.py

tools
__init__.py
simulator.py
topo_builder.py

topo
__init__.py
functional.py
topo.py

utils
__init__.py
table.py
utils.py

version.py

52 Chapter 16. v0.0.0

CHAPTER

SEVENTEEN

FREQUENTLY ASKED QUESTIONS

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list
if you find any frequent issues and have ways to help others to solve them.

53

OpenFed Documentation, Release 0.0.0

54 Chapter 17. Frequently Asked Questions

CHAPTER

EIGHTEEN

MIT LICENSE

Copyright (c) 2020 FederalLab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

55

OpenFed Documentation, Release 0.0.0

56 Chapter 18. MIT License

CHAPTER

NINETEEN

OPENFED CONTRIBUTOR LICENSE AGREEMENT

In order to clarify the intellectual property license granted with Contributions from any person or entity, FederalLab
must have a Contributor License Agreement (“CLA”) on file that has been signed by each Contributor, indicating
agreement to the license terms below. This license is for your protection as a Contributor as well as the protection of
FederalLab; it does not change your rights to use your own Contributions for any other purpose. You accept and agree
to the following terms and conditions for Your present and future Contributions submitted to FederalLab. Except for
the license granted herein to FederalLab and recipients of software distributed by FederalLab, You reserve all right,
title, and interest in and to Your Contributions.

1. Definitions. “You” (or “Your”) shall mean the copyright owner or legal entity authorized by the copyright owner
that is making this Agreement with FederalLab. For legal entities, the entity making a Contribution and all other
entities that control, are controlled by, or are under common control with that entity are considered to be a single
Contributor. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%)
or more of the outstanding shares, or (iii) beneficial ownership of such entity. “Contribution” shall mean any
original work of authorship, including any modifications or additions to an existing work, that is intentionally
submitted by You to FederalLab for inclusion in, or documentation of, any of the products owned or managed by
FederalLab (the “Work”). For the purposes of this definition, “submitted” means any form of electronic, verbal,
or written communication sent to FederalLab or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, FederalLab for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by You as “Not a Contribution.”

2. Grant of Copyright License. Subject to the terms and conditions of this Agreement, You hereby grant to Feder-
alLab and to recipients of software distributed by FederalLab a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare derivative works of, publicly display, publicly
perform, sublicense, and distribute Your Contributions and such derivative works.

3. Grant of Patent License. Subject to the terms and conditions of this Agreement, You hereby grant to FederalLab
and to recipients of software distributed by FederalLab a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable by You that are
necessarily infringed by Your Contribution(s) alone or by combination of Your Contribution(s) with the Work to
which such Contribution(s) was submitted. If any entity institutes patent litigation against You or any other entity
(including a cross-claim or counterclaim in a lawsuit) alleging that your Contribution, or the Work to which you
have contributed, constitutes direct or contributory patent infringement, then any patent licenses granted to that
entity under this Agreement for that Contribution or Work shall terminate as of the date such litigation is filed.

4. You represent that you are legally entitled to grant the above license. If your employer(s) has rights to intellectual
property that you create that includes your Contributions, you represent that you have received permission to make
Contributions on behalf of that employer, that your employer has waived such rights for your Contributions to
FederalLab, or that your employer has executed a separate Corporate CLA with FederalLab.

5. You represent that each of Your Contributions is Your original creation (see section 7 for submissions on behalf

57

OpenFed Documentation, Release 0.0.0

of others). You represent that Your Contribution submissions include complete details of any third-party license
or other restriction (including, but not limited to, related patents and trademarks) of which you are personally
aware and which are associated with any part of Your Contributions.

6. You are not expected to provide support for Your Contributions, except to the extent You desire to provide support.
You may provide support for free, for a fee, or not at all. Unless required by applicable law or agreed to in writing,
You provide Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

7. Should You wish to submit work that is not Your original creation, You may submit it to FederalLab separately
from any Contribution, identifying the complete details of its source and of any license or other restriction (in-
cluding, but not limited to, related patents, trademarks, and license agreements) of which you are personally
aware, and conspicuously marking the work as “Submitted on behalf of a third-party: [named here]”.

8. You agree to notify FederalLab of any facts or circumstances of which you become aware that would make these
representations inaccurate in any respect.

58 Chapter 19. OpenFed Contributor License Agreement

CHAPTER

TWENTY

PULL REQUEST (PR)

20.1 What is PR

PR is the abbreviation of Pull Request. Here’s the definition of PR in the official document of Github.

Pull requests let you tell others about changes you’ve pushed to a branch in a repository on GitHub. Once
a pull request is opened, you can discuss and review the potential changes with collaborators and add
follow-up commits before your changes are merged into the base branch.

20.2 Basic Workflow

1. Get the most recent codebase

2. Checkout a new branch from the master branch

3. Commit your changes

4. Push your changes and create a PR

5. Discuss and review your code

6. Merge your branch to the master branch

20.3 Procedures in detail

1. Get the most recent codebase

• When you work on your first PR

– Fork the OpenFed repository: click the fork button at the top right corner of Github page

– Clone forked repository to local

git clone git@github.com:XXX/OpenFed.git

– Add source repository to upstream

59

https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

OpenFed Documentation, Release 0.0.0

git remote add upstream git@github.com:FederalLab/OpenFed.git

• After your first PR

– Checkout master branch of the local repository and pull the latest master branch of the source repository

git checkout master
git pull upstream master

2. Checkout a new branch from the master branch

git checkout -b branchname

Tip: To make commit history clear, we strongly recommend you checkout the master branch before create a new
branch.

1. Commit your changes

coding
git add [files]
git commit -m 'messages'

2. Push your changes to the forked repository and create a PR

• Push the branch to your forked remote repository

git push origin branchname

• Revise PR message template to describe your motivation and modifications made in this PR. You can also
link the related issue to the PR manually in the PR message (For more information, checkout the official
guidance).

3. Discuss and review your code

• After creating a pull request, you can ask a specific person to review the changes you’ve proposed.

• Modify your codes according to reviewers’ suggestions and then push your changes

4. Merge your branch to the master branch and delete the branch

git branch -d branchname # delete local branch
git push origin --delete branchname # delete remote branch

20.4 PR Specs

1. Use pre-commit hook to avoid issues of code style

2. One short-time branch should be matched with only one PR

3. Accomplish a detailed change in one PR. Avoid large PR

• Bad: Support FedAvg

• Acceptable: Add a new aggregate method of FedAvg

• Good: Add a new aggragate function which enable the average operation.

60 Chapter 20. Pull Request (PR)

https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://pre-commit.com

OpenFed Documentation, Release 0.0.0

4. Provide clear and significant commit message

5. Provide clear and meaningful PR description

• Task name should be clarified in title. The general format is: [Prefix] Short description of the PR (Suffix)

• Prefix: add new feature [Feature], fix bug [Fix], related to documents [Docs], in developing [WIP] (which
will not be reviewed temporarily)

• Introduce main changes, results and influences on other modules in short description

• Associate related issues and pull requests with a milestone

20.4. PR Specs 61

OpenFed Documentation, Release 0.0.0

62 Chapter 20. Pull Request (PR)

CHAPTER

TWENTYONE

COMMON

63

OpenFed Documentation, Release 0.0.0

64 Chapter 21. common

CHAPTER

TWENTYTWO

CORE

65

OpenFed Documentation, Release 0.0.0

66 Chapter 22. core

CHAPTER

TWENTYTHREE

DATA

67

OpenFed Documentation, Release 0.0.0

68 Chapter 23. data

CHAPTER

TWENTYFOUR

FEDERATED

69

OpenFed Documentation, Release 0.0.0

70 Chapter 24. federated

CHAPTER

TWENTYFIVE

FUNCTIONAL

71

OpenFed Documentation, Release 0.0.0

72 Chapter 25. functional

CHAPTER

TWENTYSIX

OPTIM

73

OpenFed Documentation, Release 0.0.0

74 Chapter 26. optim

CHAPTER

TWENTYSEVEN

TOOLS

75

OpenFed Documentation, Release 0.0.0

76 Chapter 27. tools

CHAPTER

TWENTYEIGHT

TOPO

77

OpenFed Documentation, Release 0.0.0

78 Chapter 28. topo

CHAPTER

TWENTYNINE

UTILS

79

OpenFed Documentation, Release 0.0.0

80 Chapter 29. utils

CHAPTER

THIRTY

API

81

OpenFed Documentation, Release 0.0.0

82 Chapter 30. api

CHAPTER

THIRTYONE

HOW TO UPDATE THE DOCUMENTATION

We use sphinx to generate the documentation for this project. The documentation project has been initialized properly
and we basically just need to update the actual content.

Install dependencies: pip install -r ../requirements/docs.txt.

If we ever change the code structure since last compilation, we may need to regenerate the docstring index:

sphinx-apidoc -f -o . ../openfed
sphinx-apidoc -f -o . ../examples

The command detects the code structure under ../openfed and generates a series of *.rst files, such as openfed.
api.rst. However, the docstring would not be compiled until we execute make html later.

We can also update the hand-crafted documents, including intro.rst and tutorial.rst. The openfed.rst is the
entry file. We don’t need to modify it unless we want to add more hand-crafted pages or adjust the order in the Contents
page.

After completing revision on the .rst files, we would compile the documentation source code:

make clean
make html

The Makefile supports many targets. We choose html because we can easily host the documentation on a remote server:

cd _build/html
python -m http.server

83

OpenFed Documentation, Release 0.0.0

84 Chapter 31. How to update the documentation

CHAPTER

THIRTYTWO

INDICES AND TABLES

• genindex

• search

85

	OpenFed
	Introduction
	Install
	Start Federated Learning In An Unprecedented Simple Way
	Citation
	Contributing
	License

	Installation
	Build OpenFed from source
	Build on Linux or macOS
	Build on Windows
	Test

	Common
	Meta
	Address

	Core
	Maintainer
	Examples

	Data
	FederatedDataset
	PartitionerDataset
	Partitioner

	Federated
	Pipe
	DistributedProperties
	FederatedProperties
	Examples

	Functional
	Step
	Package and Unpackage

	Optim
	FederatedOptimizer

	Tools
	TopoBuilder
	Simulator

	Topo
	Node
	Edge
	Topology
	FederatedGroup

	Utils
	Format output as table

	Api
	Paillier Crypto
	Public and Private Key
	Network and Loss
	Optimizer
	Topology
	Federated Group Properties
	Maintainer
	Dataset
	API
	Step
	Main Function
	Enable colorize output
	Run
	Result

	Simulator
	Script
	Run

	v0.0.0
	Frequently Asked Questions
	MIT License
	OpenFed Contributor License Agreement
	Pull Request (PR)
	What is PR
	Basic Workflow
	Procedures in detail
	PR Specs

	common
	core
	data
	federated
	functional
	optim
	tools
	topo
	utils
	api
	How to update the documentation
	Indices and tables

