

Welcome to OpenFed’s documentation!

Get Started

	OpenFed

	Installation

	Build OpenFed from source

Understand OpenFed

	Common

	Core

	Data

	Federated

	Functional

	Optim

	Tools

	Topo

	Utils

	Api

Examples

	Paillier Crypto

	Simulator

Compatibility

	v0.0.0

FAQ

	Frequently Asked Questions

FAQ

	MIT License

Community

	OpenFed Contributor License Agreement

	Pull Request (PR)

API Reference

	common

	core

	data

	federated

	functional

	optim

	tools

	topo

	utils

	api

Build documentation

	How to update the documentation

Indices and tables

	Index

	Search Page

 Installation

Installation

pip install openfed

 Build OpenFed from source

Build OpenFed from source

Build on Linux or macOS

git clone https://github.com/FederalLab/OpenFed.git
cd OpenFed
pip install -e .

Build on Windows

Building OpenFed on Windows is a familiar with that on Linux.

Test

(openfed) ./pytest.sh
General test...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
collected 32 items / 11 deselected / 21 selected

tests/test_simulator.py . [4%]
tests/test_data/test_partitioner.py . [9%]
tests/test_api.py . [14%]
tests/test_build.py . [19%]
tests/test_common/test_address.py [38%]
tests/test_common/test_meta.py . [42%]
tests/test_data/test_partitioner.py ... [57%]
tests/test_topo/test_topo.py [76%]
tests/test_utils/test_table.py .. [85%]
tests/test_utils/test_utils.py ... [100%]

========== 21 passed, 11 deselected in 1.43s ===========
Federated...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [3] / gw1 [3] / gw2 [3]
... [100%]
================== 3 passed in 3.80s ===================
Maintainer...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [3] / gw1 [3] / gw2 [3]
... [100%]
================== 3 passed in 1.73s ===================
Simulator...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [4] / gw1 [4] / gw2 [4]
.... [100%]
================== 4 passed in 1.84s ===================
Paillier Crypt...
================= test session starts ==================
platform darwin -- Python 3.7.10, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /Users/densechen/code/OpenFed
plugins: xdist-2.4.0, ordering-0.6, forked-1.3.0
gw0 [2] / gw1 [2]
100%|█████████████████████| 2/2 [00:03<00:00, 1.87s/it]
. [100%]
================== 2 passed in 5.28s ===================
(openfed) densechen@C02DW0CQMD6R  ~/code/OpenFed   main ± 

 Common

Common

Meta

Meta class is a special dictionary that used to convey messages between aggregator and collaborators. It contains two default attributions:

	mode: String in [train, others]. If mode==train, the collaborator will train the global model with personal privacy data, and upload the trained model to aggregator. The aggregator will automatically aggregate the received models. Otherwise, the collaborator will not update the global model. It will test the global on personal privacy data and return the results to aggregator.

	version: Int. The version number of received global model. In federated learning, we need to use this version tag to control the update behavior of aggregator. Sometimes, the aggregator receives the invalid version of model, which may be out of date. When this case occurs, aggregator will apply some tragedies to deal with it.

Meta class can used as a standard dictionary:

>>> import openfed
>>> meta = openfed.Meta()
>>> meta
<OpenFed> Meta
+-------+---------+
| mode | version |
+-------+---------+
| train | -1 |
+-------+---------+

>>> meta['timestamp'] = openfed.utils.time_string()
>>> meta
<OpenFed> Meta
+-------+---------+---------------------+
| mode | version | timestamp |
+-------+---------+---------------------+
| train | -1 | 2021-09-21 09:50:41 |
+-------+---------+---------------------+

Meta class can also be used as a class to access his attributions:

>>> import openfed
>>> meta = openfed.Meta()
>>> meta
<OpenFed> Meta
+-------+---------+
| mode | version |
+-------+---------+
| train | -1 |
+-------+---------+

>>> meta.timestamp = openfed.utils.time_string()
>>> meta
<OpenFed> Meta
+-------+---------+---------------------+
| mode | version | timestamp |
+-------+---------+---------------------+
| train | -1 | 2021-09-21 09:52:47 |
+-------+---------+---------------------+

Address

Address class stores all the arguments needed to build a process group. It will automatically check the arguments you passed in. There are two kinds of address:

	tcp_address: TCP address will keep the communication via a tcp address.

	file_address: File address will keep the communication via a shared file.

We also provide an empty_address, which contains nothing information, to play as a placeholder.

Define a tcp address:

>>> import openfed
>>> tcp_address = openfed.Address('gloo', 'tcp://localhost:1994')
>>> tcp_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

Load the default_tcp_address:

>>> import openfed
>>> openfed.default_tcp_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

Define a file address:

>>> import openfed
>>> file_address = openfed.Address('gloo', 'file:///tmp/openfed.sharedfile')
>>> file_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

Load the default_file_address:

>>> import openfed
>>> openfed.default_file_address
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

Load the empty_address:

>>> import openfed
>>> openfed.empty_address
<OpenFed> Address
+---------+-------------+------------+------+
| backend | init_method | world_size | rank |
+---------+-------------+------------+------+
| null | null | 2 | -1 |
+---------+-------------+------------+------+

You can refer to the API documentation for more details about each arguments.

 Core

Core

Maintainer

:class:Maintainer bridges the connection between upper(federated algorithms) and lower(communication and topology) layers. It has the following properties:

	pipe: The currently target to communicate with. A maintainer will manage several pipes in the same time, and pipe will indicate what is the current target.

	pipes: A list of pipes to communicate with.

	current_step: It is used to indicate which step is running on.

	fed_props: Actually, a maintainer is corresponding to a specified federated group. We record the related federated group properties in this attributions.

You can use :class:Maintainer to conduct a flexible communication with other nodes more easily than :class:Pipe.

Examples

Aggregator:

 # build a topology first
 import openfed
 import openfed.topo as topo

 aggregator = topo.Node('aggregator', openfed.default_tcp_address)
 alpha = topo.Node('alpha', openfed.empty_address)
 beta = topo.Node('beta', openfed.empty_address)

 topology = topo.Topology()
 topology.add_node_list([aggregator, alpha, beta])
 topology.add_edge(alpha, aggregator)
 topology.add_edge(beta, aggregator)

 # analysis topology to get federated group props
 federated_group_props = topo.analysis(topology, aggregator)
 assert len(federated_group_props) == 1
 federated_group_prop = federated_group_props[0]

 # build network
 import torch.nn as nn
 network = nn.Linear(10, 1)

 # build maintainer
 from openfed.core import Maintainer
 maintainer = Maintainer(federated_group_prop,
 network.state_dict(keep_vars=True))

 with maintainer:
 openfed.functional.device_alignment()
 openfed.functional.count_step(2)

 maintainer.step()

Collaborator alpha:

 # build a topology first
 import openfed
 import openfed.topo as topo

 aggregator = topo.Node('aggregator', openfed.default_tcp_address)
 alpha = topo.Node('alpha', openfed.empty_address)
 beta = topo.Node('beta', openfed.empty_address)

 topology = topo.Topology()
 topology.add_node_list([aggregator, alpha, beta])
 topology.add_edge(alpha, aggregator)
 topology.add_edge(beta, aggregator)

 # analysis topology to get federated group props
 federated_group_props = topo.analysis(topology, alpha)
 assert len(federated_group_props) == 1
 federated_group_prop = federated_group_props[0]

 # build network
 import torch.nn as nn
 network = nn.Linear(10, 1)

 # build maintainer
 from openfed.core import Maintainer
 maintainer = Maintainer(federated_group_prop,
 network.state_dict(keep_vars=True))

 with maintainer:
 openfed.functional.device_alignment()

 maintainer.step(upload=False)
 maintainer.package()
 maintainer.step(download=False)

Collaborator beta:

 # build a topology first
 import openfed
 import openfed.topo as topo

 aggregator = topo.Node('aggregator', openfed.default_tcp_address)
 alpha = topo.Node('alpha', openfed.empty_address)
 beta = topo.Node('beta', openfed.empty_address)

 topology = topo.Topology()
 topology.add_node_list([aggregator, alpha, beta])
 topology.add_edge(alpha, aggregator)
 topology.add_edge(beta, aggregator)

 # analysis topology to get federated group props
 federated_group_props = topo.analysis(topology, beta)
 assert len(federated_group_props) == 1
 federated_group_prop = federated_group_props[0]

 # build network
 import torch.nn as nn
 network = nn.Linear(10, 1)

 # build maintainer
 from openfed.core import Maintainer
 maintainer = Maintainer(federated_group_prop,
 network.state_dict(keep_vars=True))

 with maintainer:
 openfed.functional.device_alignment()

 maintainer.step(upload=False)
 maintainer.package()
 maintainer.step(download=False)

 Data

Data

FederatedDataset

In order to load the simulated federated data in a uniform way, we provide :class:FederatedDataset. Compared with :class:Dataset, it has two extra attributes:

	part_id: Part id to load.

	total_parts: The total number of parts.

PartitionerDataset

:class:PartitionerDataset will divide a custom dataset according to the partitioner you selected. It is the most convenient method to generate a simulated federated dataset for testing.

For example, we can use the following piece of code to generate the Federated-MNIST:

>>> from openfed.data import IIDPartitioner, PartitionerDataset
>>> from torchvision.datasets import MNIST
>>> from torchvision.transforms import ToTensor
>>> dataset = PartitionerDataset(
 MNIST(r'/tmp/', True, ToTensor(), download=True), total_parts=10, partitioner=IIDPartitioner())
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/MNIST/raw/train-images-idx3-ubyte.gz
9913344it [00:19, 502512.54it/s]
Extracting /tmp/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to /tmp/MNIST/raw/train-labels-idx1-ubyte.gz
29696it [00:00, 853940.49it/s]
Extracting /tmp/MNIST/raw/train-labels-idx1-ubyte.gz to /tmp/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to /tmp/MNIST/raw/t10k-images-idx3-ubyte.gz
1649664it [00:04, 406894.94it/s]
Extracting /tmp/MNIST/raw/t10k-images-idx3-ubyte.gz to /tmp/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/MNIST/raw/t10k-labels-idx1-ubyte.gz
5120it [00:00, 14221746.01it/s]
Extracting /tmp/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/MNIST/raw

Processing...
/Users/densechen/miniconda3/envs/openfed/lib/python3.7/site-packages/torchvision/datasets/mnist.py:502: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /Users/distiller/project/conda/conda-bld/pytorch_1616554799287/work/torch/csrc/utils/tensor_numpy.cpp:143.)
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
Done!
>>> from openfed.data.utils import samples_distribution
>>> samples_distribution(dataset, True)
+-------+---------+---------+------+
| Parts | Samples | Mean | Var |
+-------+---------+---------+------+
| 10 | 59960 | 5996.00 | 0.00 |
+-------+---------+---------+------+
[5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996, 5996]

Partitioner

:class:Partitioner can generate a non-iid distribution datasets easily. We provide three different ways, i.e., PowerLawPartitioner, DirichletPartitioner, IIDPartitioner.

 Federated

Federated

Pipe

:class:Pipe maintains the communication operation between two nodes, including tensor data and info message.
It uses a store to transfer info message and process group with gloo or mpi to transfer tensor data.

DistributedProperties

:class:DistributedProperties contains all distributed attributions of torch.distributed.distributed_c10d.
Usually, you can use it with context environment.

with dist_props:
 ...

FederatedProperties

:class:FederatedProperties contains all federated attributions, such as address, role and nick name.
It is usually generated via :func:openfed.topo.analysis.

Examples

Here, we try to communicate some information among aggregator, collaborator_alpha and collaborator_beta.
You need to open three independent terminals to run the following three scripts.

Aggregator:

build a topology first
import time

transfer data
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, aggregator)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

assert len(pipes) == 2
alpha_pipe, beta_pipe = pipes

transfer message
alpha_pipe.direct_set('message_0', 'hello world from aggregator to alpha')
beta_pipe.direct_set('message_0', 'hello world from aggregator to beta')

print(alpha_pipe.direct_get('message_1'))
print(beta_pipe.direct_get('message_1'))

data = torch.tensor(-1)
with alpha_pipe.dist_props:
 time.sleep(0.5)
 # send data to alpha
 alpha_pipe.upload(data)

 time.sleep(0.5)
 # download data from alpha
 assert alpha_pipe.download() == 1

with beta_pipe.dist_props:
 time.sleep(0.5)
 # send data to beta
 beta_pipe.upload(data)

 time.sleep(0.5)
 # download data from beta
 assert beta_pipe.download() == 2

time.sleep(1)

Collaborator alpha:

build a topology first
import time

transfer tensor
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, alpha)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

alpha_pipe = pipes[0]

transfer message
print(alpha_pipe.direct_get('message_0'))

alpha_pipe.direct_set('message_1', 'hello world from alpha to aggregator')

data = torch.tensor(1)
with alpha_pipe.dist_props:
 # download data from aggregator
 assert alpha_pipe.download() == -1

 # upload data to aggregator
 alpha_pipe.upload(data)

time.sleep(1)

Collaborator beta:

build a topology first
import time

transfer data
import torch

import openfed
import openfed.topo as topo

aggregator = topo.Node('aggregator', openfed.default_tcp_address)
alpha = topo.Node('alpha', openfed.empty_address)
beta = topo.Node('beta', openfed.empty_address)

topology = topo.Topology()
topology.add_node_list([aggregator, alpha, beta])
topology.add_edge(alpha, aggregator)
topology.add_edge(beta, aggregator)

analysis topology to get federated group props
federated_group_props = topo.analysis(topology, beta)
assert len(federated_group_props) == 1
federated_group_prop = federated_group_props[0]

build pipe
pipes = openfed.federated.init_federated_group(federated_group_prop)

beta_pipe = pipes[0]

transfer message
print(beta_pipe.direct_get('message_0'))

beta_pipe.direct_set('message_1', 'hello world from beta to aggregator')

data = torch.tensor(2)
with beta_pipe.dist_props:
 # download data from aggregator
 assert beta_pipe.download() == -1

 # upload data to aggregator
 beta_pipe.upload(data)

time.sleep(1)

The output of aggregator:

(openfed) python aggregator.py
hello world from alpha to aggregator
hello world from beta to aggregator

The output of collaborator alpha:

(openfed) python collaborator_alpha.py
hello world from aggregator to alpha

The output of collaborator beta:

(openfed) python collaborator_beta.py
hello world from aggregator to beta

 Functional

Functional

There are three mainly kinds of hooks, i.e., package hook, unpackage hook and step hook.
All these hooks can be automatically register to a maintainer in with maintainer context.
There is a nice value to control the order of the hooks to apply. A lower nice value means a higher priority.

Step

Step hook is mainly used for control aggregator operations. You can define a step hook and register it to a maintainer via :func:register_step_hook.

Package and Unpackage

Package and Unpackage hooks usually pair up with each other. This hook is used for pack data before upload and unpack data after download. You can define a package hook and register it to a maintainer via :func:register_package_hook. You can also define a unpackage hook and register it to a maintainer via :func:register_unpackage_hook.

 Optim

Optim

FederatedOptimizer

:class:FederatedOptimizer wrapper an :class:torch.optim.Optimizer, and provide some necessary functions for federated learning. The simplest way to generate an federated optimizer is to use this wrapper like:

sgd = optim.SGD(...)
For aggregator
fed_sgd = FederatedOptimizer(sgd, role=openfed.aggregator)
For collaborator
fed_sgd = FederatedOptimizer(sgd, role=openfed.collaborator)

FederatedOptimizer usually has different behaviors when it plays different roles.
It has two special functions, namely :func:acg_step and :func:round.

	acg_step: If you want to calculate some statistic metric of dataset with the downloaded model, you can implement here. This function will be called before the training phase.

	round: If you need to calculate some statistic metric of dataset with the trained model, you can implement here. This function will be called after the training phase.

 Tools

Tools

TopoBuilder

TopoBuilder provides a common line for you to build a massive topology graph more easily.
Then you can save it to disk and load it in your code.

The following example shows how to build a hierarchical topology graph:

 Topo

Topo

Node

Each device is regarded as a Node with nick_name and address. The nick name is the identification for each node and needs to be unique. Any nodes could connect to others via the address. Only when two nodes have the same address and nick name, we will regard them as the some one.

For example, we can define two nodes:

>>> import openfed
>>> alpha = openfed.topo.Node('alpha node', openfed.default_tcp_address)
>>> beta = openfed.topo.Node('beta node', openfed.default_file_address)
>>> alpha
<OpenFed> Node
nick name: alpha node
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 2 | -1 |
+---------+---------------------+------------+------+

>>> beta
<OpenFed> Node
nick name: beta node
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | file:///tmp/open... | 2 | -1 |
+---------+---------------------+------------+------+

Edge

The relation between two nodes is determined via Edge. An Edge with two attributions:

	start: The start node, namely the collaborator nodes.

	end: The end node, namely the aggregator nodes.

If you want to build a connection between alpha(collaborator) and beta(aggregator), you may need a piece of code like:

>>> edge = openfed.topo.Edge(alpha, beta)
>>> edge
<OpenFed> Edge
|alpha node -> beta node.

In OpenFed, all the connection relationship should be represented as a Topology.

Topology

In OpenFed, we use Topology to manage massive nodes and edges. Here, we try to build a very simple centralized topology between three nodes, alpha(aggregator), beta(collaborator), gamma(collaborator).

>>> import openfed
>>> # define node
>>> alpha = openfed.topo.Node('alpha node', openfed.default_tcp_address)
>>> # the address of collaborator can be ignored.
>>> beta = openfed.topo.Node('beta node', openfed.empty_address)
>>> gamma = openfed.topo.Node('gamma node', openfed.empty_address)
>>> # define an empty topology
>>> topology = openfed.topo.Topology()
>>> # add nodes to topology
>>> topology.add_node(alpha)
>>> topology.add_node(beta)
>>> topology.add_node(gamma)
>>> # add edge
>>> topology.add_edge(beta, alpha)
>>> topology.add_edge(gamma, alpha)
>>> topology
+------------+------------+-----------+------------+
| CO\AG | alpha node | beta node | gamma node |
+------------+------------+-----------+------------+
| alpha node | . | . | . |
| beta node | ^ | . | . |
| gamma node | ^ | . | . |
+------------+------------+-----------+------------+

FederatedGroup

We will analysis Topology and build a FederatedGroup for each node. Whatever the topology is, we will divide it into many federated groups. In each group, the node can only be a aggregator or a collaborator. In different groups, the node can play different roles.

Federated groups of alpha node:

>>> federated_groups = openfed.topo.analysis(topology, alpha)
>>> federated_groups
[<OpenFed> FederatedProperties
+--------------------+------------+
| role | nick_name |
+--------------------+------------+
| openfed_aggregator | alpha node |
+--------------------+------------+
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 0 |
+---------+---------------------+------------+------+

]

Federated groups of beta node:

>>> federated_groups = openfed.topo.analysis(topology, beta)
>>> federated_groups
[<OpenFed> FederatedProperties
+----------------------+-----------+
| role | nick_name |
+----------------------+-----------+
| openfed_collaborator | beta node |
+----------------------+-----------+
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 1 |
+---------+---------------------+------------+------+

]

Federated groups of gamma node:

>>> federated_groups = openfed.topo.analysis(topology, gamma)
>>> federated_groups
[<OpenFed> FederatedProperties
+----------------------+------------+
| role | nick_name |
+----------------------+------------+
| openfed_collaborator | gamma node |
+----------------------+------------+
<OpenFed> Address
+---------+---------------------+------------+------+
| backend | init_method | world_size | rank |
+---------+---------------------+------------+------+
| gloo | tcp://localhost:... | 3 | 2 |
+---------+---------------------+------------+------+

]

You can refer to openfed.tools.topo_builder for more details about how to build a complex topology.

 Utils

Utils

This component provides some useful functions, such as seed_everything, time_string.

Format output as table

Sometimes, we can receive a better visualization via show some data in a table.

You can do this with :func:tablist:

>>> from openfed.utils import tablist
>>> head = ['a', 'b', 'c', 'd', 'e', 'f']
>>> data = [1, 2, 3, 4, 5, 6]
>>> print(tablist(head, data, 3))
+---+---+---+
| a | b | c |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
+---+---+---+
| d | e | f |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
>>> print(tablist(head, data, force_in_one_row=True))
+---+---+---+---+---+---+
| a | b | c | d | e | f |
+---+---+---+---+---+---+
| 1 | 2 | 3 | 4 | 5 | 6 |
+---+---+---+---+---+---+
>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> print(tablist(head, data, force_in_one_row=True))
+---+---+---+----+----+----+
| a | b | c | d | e | f |
+---+---+---+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 |
| 7 | 8 | 9 | 10 | 11 | 12 |
+---+---+---+----+----+----+

 Api

Api

:class:API provides a simple wrapper of aggregator logistic.
After define an :class:API, you can use it in the backend:

api.start()
api.join()

or run it on the main process:

api.run()

When it runs on backend, you have to acquire the :attr:openfed.federated.openfed_lock before start your main process distributed training.
The :attr:openfed.federated.openfed_lock will lock the data-transfer operation at openfed, but has no influence on message-transfer.
Since openfed share the same module with torch to build communication between two process, we have to use this lock to control the data transfer operation.

 Paillier Crypto

Paillier Crypto

This script shows a simple demostration about Paillier Crypto algorithm on federated MNIST dataset.

Public and Private Key

import os
import torch

from openfed.functional import key_gen

if not os.path.isfile('/tmp/public.key') or not os.path.isfile('/tmp/private.key'):
 public_key, private_key = key_gen()
 public_key.save('/tmp/public.key')
 private_key.save('/tmp/private.key')
 print("Generate new public and private key.")
else:
 print("Found public and private key under '/tmp'")

Found public and private key under '/tmp'

Network and Loss

import torch.nn as nn

def build_network():
 network = nn.Linear(784, 10)
 loss_fn = nn.CrossEntropyLoss()
 return network, loss_fn

Optimizer

from openfed.federated import is_aggregator, is_collaborator
from openfed.optim import FederatedOptimizer
import torch.optim as optim

def build_optimizer(network, role):
 sgd = optim.SGD(network.parameters(), lr=1.0 if is_aggregator(role) else 0.1)
 fed_sgd = FederatedOptimizer(sgd, role=role)
 return fed_sgd

Topology

import openfed
import openfed.topo as topo

def build_topology():
 aggregator_node = topo.Node('aggregator', address=openfed.default_tcp_address)
 collaborator_node = topo.Node('collaborator', address=openfed.empty_address)

 topology = topo.Topology()
 topology.add_edge(collaborator_node, aggregator_node)

 return topology

Federated Group Properties

def build_props(topology, role):
 fed_props = topo.analysis(topology, 'aggregator' if is_aggregator(role) else 'collaborator')
 assert len(fed_props) == 1
 fed_prop = fed_props[0]

 return fed_prop

Maintainer

from openfed.core import Maintainer

def build_maintainer(fed_prop, state_dict, role, part_per_round):
 maintainer = Maintainer(fed_prop, state_dict)

 with maintainer:
 openfed.functional.device_alignment()
 if is_aggregator(role):
 openfed.functional.count_step(part_per_round)
 else:
 public_key = openfed.functional.PublicKey.load('/tmp/public.key')
 openfed.functional.paillier_package(public_key)
 return maintainer

Dataset

from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
from openfed.data import IIDPartitioner, PartitionerDataset

def build_dataset():
 # Dataset
 mnist = MNIST(r'/tmp/', True, ToTensor(), download=True)
 fed_mnist = PartitionerDataset(mnist, total_parts=10, partitioner=IIDPartitioner())

 # Dataloader
 dataloader = DataLoader(fed_mnist, batch_size=10, shuffle=True, num_workers=0, drop_last=False)

 return dataloader

API

def build_API(maintainer, fed_sgd, rounds):
 private_key = openfed.functional.PrivateKey.load('/tmp/private.key')
 api = openfed.API(maintainer,
 fed_sgd,
 rounds,
 agg_func=openfed.functional.paillier_aggregation,
 agg_func_kwargs=dict(private_key=private_key),
)
 return api

Step

import random
import time

def step(mt, dataloader, network, loss_fn, fed_optim, rounds, part_per_round):
 version = 0
 outter_losses = []
 for outter in range(rounds):
 outter_loss = []
 for inner in range(part_per_round):
 mt.update_version(version)
 mt.step(upload=False)

 part_id = random.randint(0, 9)
 dataloader.dataset.set_part_id(part_id)

 network.train()
 losses = []
 tic = time.time()
 for data in dataloader:
 x, y = data
 output = network(x.view(-1, 784))
 loss = loss_fn(output, y)

 fed_optim.zero_grad()
 loss.backward()
 fed_optim.step()
 losses.append(loss.item())
 toc = time.time()
 loss = sum(losses) / len(losses)
 outter_loss.append(loss)
 duration = toc - tic

 fed_optim.round()

 mt.update_version(version + 1)
 mt.package(fed_optim)
 mt.step(download=False)
 fed_optim.clear_state_dict()
 version += 1
 outter_losses.append(sum(outter_loss) / len(outter_loss))
 torch.save(outter_losses, '/tmp/outter_losses')

Main Function

def main_function(role, rounds, part_per_round):
 # Network
 network, loss_fn = build_network()

 if is_aggregator(role):
 print(network)
 print(loss_fn)

 # Optimizer
 fed_sgd = build_optimizer(network, role)

 if is_aggregator(role):
 print(fed_sgd)

 # Topology
 topology = build_topology()

 if is_aggregator(role):
 print(topology)

 # Federated Group Properties
 fed_prop = build_props(topology, role)

 print(fed_prop)

 # Maintainer
 maintainer = build_maintainer(fed_prop, network.state_dict(keep_vars=True), role, part_per_round)

 if is_aggregator(role):
 api = build_API(maintainer, fed_sgd, rounds)
 api.start()
 else:
 dataloader = build_dataset()
 step(maintainer, dataloader, network, loss_fn, fed_sgd, rounds, part_per_round)

Enable colorize output

from openfed.utils.utils import FMT

FMT.color = True

Run

from multiprocessing import Process
import openfed
rounds = 3
part_per_round = 5

aggregator_pc = Process(target=main_function, args=(openfed.federated.aggregator, rounds, part_per_round))
collaborator = Process(target=main_function, args=(openfed.federated.collaborator, rounds, part_per_round))

aggregator_pc.start()
collaborator.start()

aggregator_pc.join()
collaborator.join()

Linear(in_features=784, out_features=10, bias=True)
CrossEntropyLoss()

 Simulator

Simulator

This script provides a most simplest way to do federated learning with simultor.

Script

import argparse
import random
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor

import openfed
from openfed.data import IIDPartitioner, PartitionerDataset

parser = argparse.ArgumentParser(description='Simulator')
parser.add_argument('--props', type=str, default='/tmp/aggregator.json')
args = parser.parse_args()

props = openfed.federated.FederatedProperties.load(args.props)
assert len(props) == 1
props = props[0]

network = nn.Linear(784, 10)
loss_fn = nn.CrossEntropyLoss()

sgd = torch.optim.SGD(
 network.parameters(), lr=1.0 if props.aggregator else 0.1)
fed_sgd = openfed.optim.FederatedOptimizer(sgd, props.role)

maintainer = openfed.core.Maintainer(props, network.state_dict(keep_vars=True))

with maintainer:
 openfed.functional.device_alignment()
 if props.aggregator:
 openfed.functional.count_step(props.address.world_size - 1)

rounds = 10
if maintainer.aggregator:
 api = openfed.API(maintainer, fed_sgd, rounds,
 openfed.functional.average_aggregation)
 api.run()
else:
 mnist = MNIST(r'/tmp/', True, ToTensor(), download=True)
 fed_mnist = PartitionerDataset(
 mnist, total_parts=100, partitioner=IIDPartitioner())

 dataloader = DataLoader(
 fed_mnist, batch_size=10, shuffle=True, num_workers=0, drop_last=False)

 version = 0
 for outter in range(rounds):
 maintainer.update_version(version)
 maintainer.step(upload=False)

 part_id = random.randint(0, 9)
 fed_mnist.set_part_id(part_id)

 network.train()
 losses = []
 for data in dataloader:
 x, y = data
 output = network(x.view(-1, 784))
 loss = loss_fn(output, y)

 fed_sgd.zero_grad()
 loss.backward()
 fed_sgd.step()
 losses.append(loss.item())
 loss = sum(losses) / len(losses)

 fed_sgd.round()

 maintainer.update_version(version + 1)
 maintainer.package(fed_sgd)
 maintainer.step(download=False)
 fed_sgd.clear_state_dict()
 version += 1

Copy and save these piece of code as examples/run.py.

Run

Launch 6 process (1 for aggregator, 5 for collaborator) to do simulation.
!python -m openfed.tools.simulator --nproc 6 run.py

[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
[W ProcessGroupGloo.cpp:559] Warning: Unable to resolve hostname to a (local) address. Using the loopback address as fallback. Manually set the network interface to bind to with GLOO_SOCKET_IFNAME. (function operator())
100%|███| 10/10 [00:01<00:00, 5.90it/s]

 v0.0.0

v0.0.0

In order to flexibly support more federated algorithms and projects, like scaffold, mmcv, the directory of openfed might be refactored.

v0.0.0’s directory was organized as follows.

openfed
├── __init__.py
├── api.py
├── common
│ ├── __init__.py
│ ├── address.py
│ └── meta.py
├── core
│ ├── __init__.py
│ ├── const.py
│ ├── functional.py
│ └── maintainer.py
├── data
│ ├── __init__.py
│ ├── datasets.py
│ ├── partitioner.py
│ └── utils.py
├── federated
│ ├── __init__.py
│ ├── const.py
│ ├── exceptions.py
│ ├── functional.py
│ ├── pipe.py
│ └── props.py
├── functional
│ ├── __init__.py
│ ├── agg.py
│ ├── const.py
│ ├── hooks.py
│ ├── paillier.py
│ ├── reduce.py
│ └── step.py
├── optim
│ ├── __init__.py
│ ├── elastic.py
│ ├── fed_optim.py
│ ├── prox.py
│ └── scaffold.py
├── tools
│ ├── __init__.py
│ ├── simulator.py
│ └── topo_builder.py
├── topo
│ ├── __init__.py
│ ├── functional.py
│ └── topo.py
├── utils
│ ├── __init__.py
│ ├── table.py
│ └── utils.py
└── version.py

 Frequently Asked Questions

Frequently Asked Questions

We list some common troubles faced by many users and their corresponding solutions here.
Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them.

 MIT License

MIT License

Copyright (c) 2020 FederalLab

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 OpenFed Contributor License Agreement

OpenFed Contributor License Agreement

In order to clarify the intellectual property license granted with Contributions from any person or entity, FederalLab must have a Contributor License Agreement (“CLA”) on file that has been signed by each Contributor, indicating agreement to the license terms below. This license is for your protection as a Contributor as well as the protection of FederalLab; it does not change your rights to use your own Contributions for any other purpose.
You accept and agree to the following terms and conditions for Your present and future Contributions submitted to FederalLab. Except for the license granted herein to FederalLab and recipients of software distributed by FederalLab, You reserve all right, title, and interest in and to Your Contributions.

	Definitions.
“You” (or “Your”) shall mean the copyright owner or legal entity authorized by the copyright owner that is making this Agreement with FederalLab. For legal entities, the entity making a Contribution and all other entities that control, are controlled by, or are under common control with that entity are considered to be a single Contributor. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
“Contribution” shall mean any original work of authorship, including any modifications or additions to an existing work, that is intentionally submitted by You to FederalLab for inclusion in, or documentation of, any of the products owned or managed by FederalLab (the “Work”). For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to FederalLab or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, FederalLab for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by You as “Not a Contribution.”

	Grant of Copyright License. Subject to the terms and conditions of this Agreement, You hereby grant to FederalLab and to recipients of software distributed by FederalLab a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense, and distribute Your Contributions and such derivative works.

	Grant of Patent License. Subject to the terms and conditions of this Agreement, You hereby grant to FederalLab and to recipients of software distributed by FederalLab a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by You that are necessarily infringed by Your Contribution(s) alone or by combination of Your Contribution(s) with the Work to which such Contribution(s) was submitted. If any entity institutes patent litigation against You or any other entity (including a cross-claim or counterclaim in a lawsuit) alleging that your Contribution, or the Work to which you have contributed, constitutes direct or contributory patent infringement, then any patent licenses granted to that entity under this Agreement for that Contribution or Work shall terminate as of the date such litigation is filed.

	You represent that you are legally entitled to grant the above license. If your employer(s) has rights to intellectual property that you create that includes your Contributions, you represent that you have received permission to make Contributions on behalf of that employer, that your employer has waived such rights for your Contributions to FederalLab, or that your employer has executed a separate Corporate CLA with FederalLab.

	You represent that each of Your Contributions is Your original creation (see section 7 for submissions on behalf of others). You represent that Your Contribution submissions include complete details of any third-party license or other restriction (including, but not limited to, related patents and trademarks) of which you are personally aware and which are associated with any part of Your Contributions.

	You are not expected to provide support for Your Contributions, except to the extent You desire to provide support. You may provide support for free, for a fee, or not at all. Unless required by applicable law or agreed to in writing, You provide Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON- INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

	Should You wish to submit work that is not Your original creation, You may submit it to FederalLab separately from any Contribution, identifying the complete details of its source and of any license or other restriction (including, but not limited to, related patents, trademarks, and license agreements) of which you are personally aware, and conspicuously marking the work as “Submitted on behalf of a third-party: [named here]”.

	You agree to notify FederalLab of any facts or circumstances of which you become aware that would make these representations inaccurate in any respect.

 Pull Request (PR)

Pull Request (PR)

What is PR

PR is the abbreviation of Pull Request. Here’s the definition of PR in the official document [https://docs.github.com/en/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests] of Github.

Pull requests let you tell others about changes you’ve pushed to a branch in a repository on GitHub. Once a pull request is opened, you can discuss and review the potential changes with collaborators and add follow-up commits before your changes are merged into the base branch.

Basic Workflow

	Get the most recent codebase

	Checkout a new branch from the master branch

	Commit your changes

	Push your changes and create a PR

	Discuss and review your code

	Merge your branch to the master branch

Procedures in detail

	Get the most recent codebase

	When you work on your first PR

	Fork the OpenFed repository: click the fork button at the top right corner of Github page
[image: avatar]

	Clone forked repository to local

git clone git@github.com:XXX/OpenFed.git

	Add source repository to upstream

git remote add upstream git@github.com:FederalLab/OpenFed.git

	After your first PR

	Checkout master branch of the local repository and pull the latest master branch of the source repository

git checkout master
git pull upstream master

	Checkout a new branch from the master branch

git checkout -b branchname

Tip

To make commit history clear, we strongly recommend you checkout the master branch before create a new branch.

	Commit your changes

coding
git add [files]
git commit -m 'messages'

	Push your changes to the forked repository and create a PR

	Push the branch to your forked remote repository

git push origin branchname

	Revise PR message template to describe your motivation and modifications made in this PR. You can also link the related issue to the PR manually in the PR message (For more information, checkout the official guidance [https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue]).

	Discuss and review your code

	After creating a pull request, you can ask a specific person to review the changes you’ve proposed.

	Modify your codes according to reviewers’ suggestions and then push your changes

	Merge your branch to the master branch and delete the branch

git branch -d branchname # delete local branch
git push origin --delete branchname # delete remote branch

PR Specs

	Use pre-commit [https://pre-commit.com] hook to avoid issues of code style

	One short-time branch should be matched with only one PR

	Accomplish a detailed change in one PR. Avoid large PR

	Bad: Support FedAvg

	Acceptable: Add a new aggregate method of FedAvg

	Good: Add a new aggragate function which enable the average operation.

	Provide clear and significant commit message

	Provide clear and meaningful PR description

	Task name should be clarified in title. The general format is: [Prefix] Short description of the PR (Suffix)

	Prefix: add new feature [Feature], fix bug [Fix], related to documents [Docs], in developing [WIP] (which will not be reviewed temporarily)

	Introduce main changes, results and influences on other modules in short description

	Associate related issues and pull requests with a milestone

 common

common

core

data

federated

functional

optim

tools

topo

utils

api

 How to update the documentation

How to update the documentation

We use sphinx to generate the documentation for this project.
The documentation project has been initialized properly and we basically just need to update the actual content.

Install dependencies: pip install -r ../requirements/docs.txt.

If we ever change the code structure since last compilation, we may need to regenerate the docstring index:

sphinx-apidoc -f -o . ../openfed
sphinx-apidoc -f -o . ../examples

The command detects the code structure under ../openfed and generates a series of *.rst files, such as openfed.api.rst.
However, the docstring would not be compiled until we execute make html later.

We can also update the hand-crafted documents, including intro.rst and tutorial.rst.
The openfed.rst is the entry file. We don’t need to modify it unless we want to add more hand-crafted pages or adjust the order in the Contents page.

After completing revision on the .rst files, we would compile the documentation source code:

make clean
make html

The Makefile supports many targets. We choose html because we can easily host the documentation on a remote server:

cd _build/html
python -m http.server

 Index

Index

_images/output_27_0.png
Loss.

040

038

036

034

032

030

Round-Loss

030

025

030

075

130
Round

125

150

175

200

_images/step_1.png
0 Search or jump to... Pull requests Issues Marketplace Explore

& FederalLab /OpenFed | public ®Unwatch + 1 ¥ star 2 % Fork 0

<> Code © lIssues 1 Pull requests) Discussions (® Actions [T Projects 0 wiki @ Security |~ Insights {33 Settings

¥ main ~ ¥ 1branch 0 tags Go to file Add file ~ :} About b

nav.xhtml

 Table of Contents

 		
 Welcome to OpenFed’s documentation!

 		
 OpenFed

 		
 Introduction

 		
 Install

 		
 Start Federated Learning In An Unprecedented Simple Way

 		
 Citation

 		
 Contributing

 		
 License

 		
 Installation

 		
 Build OpenFed from source

 		
 Build on Linux or macOS

 		
 Build on Windows

 		
 Test

 		
 Common

 		
 Meta

 		
 Address

 		
 Core

 		
 Maintainer

 		
 Examples

 		
 Data

 		
 FederatedDataset

 		
 PartitionerDataset

 		
 Partitioner

 		
 Federated

 		
 Pipe

 		
 DistributedProperties

 		
 FederatedProperties

 		
 Examples

 		
 Functional

 		
 Step

 		
 Package and Unpackage

 		
 Optim

 		
 FederatedOptimizer

 		
 Tools

 		
 TopoBuilder

 		
 Simulator

 		
 Topo

 		
 Node

 		
 Edge

 		
 Topology

 		
 FederatedGroup

 		
 Utils

 		
 Format output as table

 		
 Api

 		
 Paillier Crypto

 		
 Public and Private Key

 		
 Network and Loss

 		
 Optimizer

 		
 Topology

 		
 Federated Group Properties

 		
 Maintainer

 		
 Dataset

 		
 API

 		
 Step

 		
 Main Function

 		
 Enable colorize output

 		
 Run

 		
 Result

 		
 Simulator

 		
 Script

